Data aggregation.
Real time analytics

Vitalii Melnychuk, Yaware

MHS&@ .mongo

ClickHouse

What we should expecting?

- How each database works? Their benefits.

- How we have to prepare our data?

- Get aggregated data of 4 million rows less than 1
second

- Compare differents type of queries on each
database

MySQL Architecture

Connection Management/security

Server's functionality like connection
management/authentication... is done
in this layer

SQL Parsing, execution and caching...

Responsible for

storage and retrival of Heap NDB
all available MyiSAM (In-Memory) Network DB

information

)
Q.
(O

Q.
N
o
@
(©
-
=
)
-
2]
>
7))

InnoDB Database Files

MySQL Data Directory

InnoDB__——
tables

internal __
data :
dictionary []l[l files

insert innodb_file _per table
buffer

undo
logs

ibdata files

Mysql partitions

"

Primary Key

Introduction to MySQL triggers

BEFORE INSERT — activated before data is inserted into the table.
AFTER INSERT- activated after data is inserted into the table.
BEFORE UPDATE - activated before data in the table is updated.
AFTER UPDATE - activated after data in the table is updated.
BEFORE DELETE — activated before data is removed from the table.

AFTER DELETE - activated after data is removed from the table.

Approaches of using triggers

Log all inserts, updates in your system

- Divide some business functional from server side. Your data will be
consistently

Aggregate data

Preparing data

Crontab
- Triggers

- Add aggregation in server side of project
- Partitions

- Map reduce

Query Aggregation

Column-oriented storage

= Column stores store data in column-specific files
= Simplest case: one datafile per column
= Row values for each column are stored contiguously

-

filesize

filesize

\

triIAGENS

SELECT
count(x),

CliCkHouse toMonth(date) AS mon

FROM wikistat

WHERE (toYear(date) = 2008) AND ((toMonth(da
Parallel processing for single query te) >= 1) AND (toMonth(date) <= 10))
Very fast scans GROUP BY mon

SQL support (with limitations) count ()——mon
d — —

Different storage engines (disk storage format) 2077594099 1
Great for structural log/event data as well as time 1969757069 2
series data (engine MergeTree requires 2081371530 3
date field) 2156878512 4

; 2476890621 5

Index su.pport (primary key only, not all storage 2526662896 6
engines) 2460873213 7
Nice command line interface with user-friendly 2480356358 8
progress bar and formatting 2522746544 9
2614372352 10

10 rows in set. Elapsed: 14.344 sec. Process
ed 23.37 billion rows, 46.74 GB (1.63 billio

https://habrahabr.ru/company/yandex/blog/303282/ N rows/s., 3.26 GB/s.)

ClickHouse disadvantages

No real delete/update support, and no transactions
No secondary keys

Own protocol

Limited SQL support, and the joins implementation is different. If
you are migrating from MySQL or Spark, you will probably have to
re-write all queries with joins.

|applicationId |profileId |productivity |eventDate

1 |1 |1 |10 |2017-08-10 |

-1 1 |1 |10 |2017-08-10 |

1 |1 |1 |10 |2017-08-10 |

1 |2 |1 |10 |2017-08-10 | _

-1)2 |1 |10 |2017-08-10 | WHERE profileld = 1

1 |2 |1 |10 |2017-08-10 |

1 13 |1 |10 |2017-08-10 | o _
13 1 |10 |2017-08-10 | GROUP BY applicationld, profileld
1 |3 |1 |10 |2017-08-10 | :

1 12 B I-10 12017-08-10 | HAVING sum(sign) >0

-1 |4 |1 |-10 |2017-08-10 |

1 |4 |1 |-10 |2017-08-10 |

1 |5 |1 |-10 |2017-08-10 |

-1 |5 |1 |-10 |2017-08-10 |

1 |5 |1 |-10 |2017-08-10 |

7 -

How about Clickhouse in
production?

- Error handling

- Monitoring

- Migrations

- Performance optimization

Query

GROUP BY

application_id,

EventDate

application_id,
system_user _id,

EventDate

GROUP BY EventDate

WHERE system_user_id

=3

GROUP BY EventDate

WHERE

toMonth(EventDate) = 4
GROUP BY EventDate

WHERE

toMonth(EventDate) = 4

GROUP BY

application_id,
system_user_id

ClickHouse

0.161 sec

2.000 sec

0.128 sec

0.108 sec

0.011 sec

0.067 sec

Mysal

Tm 24s 540ms

Tm 29s 957ms

6s 298ms

7s 69ms

55 850ms

11s 929ms,

Mongo

1m 5.452s

Tm 7.003s

14.084s

5.928s

19.125s

24.784s

https://qgithub.com/YawareTeam/clickhouse-php-client

https://habrahabr.ru/company/yandex/blog/303282/

https://github.com/yandex/ClickHouse

https://www.percona.com/blog/2017/02/13/clickhouse-new-opensource-columnar-database/

https://www.percona.com/blog/2017/03/17/column-store-database-benchmarks-mariadb-
columnstore-vs-clickhouse-vs-apache-spark/

https://github.com/YawareTeam/clickhouse-php-client
https://habrahabr.ru/company/yandex/blog/303282/
https://github.com/yandex/ClickHouse
https://www.percona.com/blog/2017/02/13/clickhouse-new-opensource-columnar-database/

