
Elasticsearch: Controlling
relevance
Vitalii Melnychuk, Software Engineer

Store,

Index,

Analize

Terminology ● Cluster
● Node
● Shards
● Replicas

● Index -> Table
● Document -> row
● Mapping -> schema
● Field -> column

What’s next
● Document indexing

● Boolean model to find

documents

● Lucene’s Practical

scoring

Index time
Vs

Query time

Index
meanings

● Index (noun)

Index
meanings

● Index (noun)

● Index (verb)

Index
meanings

● Index (noun)

● Index (verb)

● Inverted index

● Index (noun)

● Index (verb)

● Inverted index

● Index (noun)

● Index (verb)

● Inverted index

Moving on
● Document indexing

● Boolean model to

find documents

● Lucene’s Practical

scoring

Moving on
● Document indexing

● Boolean model to find

documents

● Lucene’s Practical

scoring

Relevance
● Term frequency

tf(t in d) = √frequency

Relevance
● Term frequency
● Inverse document

frequency
idf(t) = 1 + log (numDocs /

(docFreq + 1))

Relevance
● Term frequency
● Inverse document

frequency

● Field-length norm

norm(d) = 1 / √numTerms

Lucene’s Practical scoring
score (q, d) =

queryNorm(q) queryNorm = 1 /
√sumOfSquaredWeights

score (q, d) =
queryNorm(q)
coord(q,d)

● Document with fox → score: 1.5 * 1 / 3 = 0.5

● Document with quick fox → score: 3.0 * 2 / 3 = 2.0

● Document with quick brown fox → score: 4.5 * 3 / 3

= 4.5

Lucene’s Practical scoring

score (q, d) =
queryNorm(q)
coord(q,d)
∑ (

tf(t in d)
idf(t)2

norm(t, d)
) (t in q)

tf(t in d) = √frequency

idf(t) = 1 + log (numDocs / (docFreq + 1))

norm(d) = 1 / √numTerms

Lucene’s Practical scoring

score (q, d) =
queryNorm(q)
coord(q,d)
∑ (

tf(t in d)
idf(t)2

t.getBoost()
norm(t, d)

) (t in q)

GET /docs_2014_*/_search
{
 "indices_boost": {
 "docs_2014_10": 3,
 "docs_2014_09": 2
 },
 "query": {
 "match": {
 "title": {
 "query": "quick brown fox",
 "boost": 2
 }
 }
 }
}

Lucene’s Practical scoring

∑ (
tf(t in d) * idf(t) * (k +1) /

 tf(t in d) + k * (1 - b + b * termsCount/
avgTermCount)
t.getBoost()

) (t in q)

BM25 Algorithm

ВM25’s take on IDF

ВM25’s take on TF

TF/IDF and BM25

∑ (
tf(t in d) * idf(t) * (k +1) /

 tf(t in d) + k * (1 - b + b * termsCount/
avgTermCount)

) (t in q)

BM25 Algorithm

b=0.75
 k=1.2

work pretty well

Scoring with
scripts

price = doc["price"].value;

discount = doc["margin"].value;

score = doc["_score"];

return (price * (1 - discount))+ 1 + score;

Relevance tuning is the
last 10%

Thank you!

